Non-linearity and temporal changes of fault zone site response associated with strong ground motion

نویسندگان

  • Chunquan Wu
  • Zhigang Peng
  • Yehuda Ben-Zion
چکیده

S U M M A R Y We systematically analyse temporal changes of fault zone (FZ) site response along the Karadere-Düzce branch of the North Anatolian fault that ruptured during the 1999 İzmit and Düzce earthquake sequences. The study is based primarily on spectral ratios of strong motion seismic data recorded by a FZ station and a station ∼400 m away from the fault and augmented by analysis of weak motion records. The observations are used to track non-linear behaviour and temporal changes of the FZ site response. The peak spectral ratio increases 80–150 per cent and the peak frequency drops 20–40 per cent at the time of the Düzce main shock. These co-main shock changes are followed by a logarithmic recovery over an apparent timescale of∼1 d. However, analysis of temporal changes at each individual station using weak motion waveforms generated by repeating earthquakes show lower-amplitude longer-duration logarithmic recoveries that are not detected by the spectral ratio analysis. The results are consistent with a reduction of S-wave velocities in the top 100–300 m during the Düzce main shock of 20–50 per cent or more and logarithmic post-main shock recovery on a timescale of 3 months or more. The observations support previous suggestions that non-linear wave propagation effects and temporal changes of seismic properties are generated in the shallow material by strong ground motion of nearby major earthquakes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Strong Ground Motion Catalogue of Selected Records for Shallow Crustal, Near Field Earthquakes in Iran

Understanding strong ground motions in the near-fault areas is important for seismic risk assessment in densely populated areas. In the past, lack of information on strong ground motion for large and moderate earthquakes led to the use of mainly far field large and moderate earthquake records in equations for calculation of the strong ground motion parameters. In this article, we collected and ...

متن کامل

Evaluation of Nonlinear Response of Structures to Near-Fault Ground Motions and the Comparison of Results with Near-Fault Simulated Records

Near-fault ground motions have caused very much damage in the vicinity of seismic sources during recent earthquakes. It is well known that under specific circumstances, intensive ground shakings near fault ruptures may be characterized by short-duration impulsive motions. This pulse-type motion is generally particular to the forward direction, where the fault rupture propagates towards the site...

متن کامل

Design Spectrum for Near Fault Ground Motions Considering Frequency-Dependence of CH/SC Material Behavior Regarding Laboratory and Field Shear Wave Velocity (Vs)

Introduction One-dimensional site response analysis is widely performed to account for local site effects during an earthquake. Most of these approaches assume that dynamic soil properties are frequency independent. Laboratory test results as well as in-situ testing show that shear modulus and damping ratio are dependent on the frequency of loading. Although the amplification factor at ground ...

متن کامل

Investigation of seismic damage index due to water level changes in reservoir through nonlinear dynamic analysis under Far-Fault and Near-Fault ground motions

In this study, reservoir water level effects on nonlinear dynamic response of concrete gravity dams are investigated. For this purpose, the nonlinear behavior of the dam concrete is captured using the concrete damage plasticity (CDP) on the non associated flow rule assumption. Water in the reservoir is represented by the Lagrangian (displacement-based) fluid finite elements. The program ABAQUS ...

متن کامل

بررسی اثر پارامترهای خاص گسلش و موقعیت مکانی ساختگاه بر مشخصات پالس حوزه نزدیک گسل

The characteristics of near-fault ground motion are investigated considering heterogeneous slip distribution on the fault plane. Areas on the fault plane with large slip in compare with the average slip on the fault are known as asperity. The characteristics of strong ground motions in near-fault area are strongly affected by faulting parameters such as asperity location, maximum slip of asperi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008